Pre-class Warm-up!!!
How would you solve the following equations?

$$
\begin{aligned}
& 2 x y+x^{\wedge} 2 y^{\prime}=y^{\wedge} 2 d \quad x y^{2}+3 y^{2}-x^{2} y^{\prime}=0 b \\
& x y^{\wedge} 2+3 y^{\wedge} 2-x^{\wedge} 2 y^{\prime}=0 \\
& x y^{\prime}+2 y=6 x^{\wedge} 2 \sqrt{ } y e \\
& x y^{\prime}+2 y=6 x^{\wedge} 2 \quad c^{\prime} \\
& y^{\prime}=\sqrt{ }(x+y) \\
& y^{\prime \prime}=5 / y^{\wedge} 2 \quad \frac{d^{2} y}{d t^{2}}=\frac{5}{y^{2}} \\
& 2 x y \cdot y^{\prime}+y^{\wedge} 2=10 x-2 x y \frac{d y}{d x}+y^{2}=10 x
\end{aligned}
$$

a. by integrating $y^{\prime}=$ function of x
b. separate the variables
c. as a first order linear equation
d. as a homogeneous equation
e. as a Bernoulli equation
f. make a special substitution
g. reduce the order
h. as an exact equation

In the exam you may we a ingle sheet (2 bides) of handwintten notes.

True or false?

1. If a system of linear equations has more equations than unknown variables then there is no solution.
2. If a system has fewer equations than variables there is always a solution.
3. If a system has fewer equations than variables and there is at least one solution then there are infinitely many solutions.

Section 3.5. Inverses of matrices
New vocabulary:

- Inverse matrix
- Invertible matrix = non-singular matrix
- Elementary matrix

We learn:

- Formula for the inverse of a 2×2 matrix
- How to find the inverse in general using Gauss-Jordan elimination.
- Use of the inverse in solving equations

The hardest thing:
Theorem 7. Properties of nonsingular matrices.

An inverse for a matrix A is a matrix B so that $A B=B A=I=\left[\begin{array}{lll}1 & & \\ 0 & & 1 \\ 0 & & 1\end{array}\right]$
= a matrix that hal an invere.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Page 185 question 2.
Find $A \wedge\{-1\}$; then use $A \wedge\{-1\}$ to solve the system $A x=b$ where
1.e.
$A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right] \quad b=\left[\begin{array}{c}-1 \\ 3\end{array}\right] \quad$ Solve $A x=b$
(Related question: find a matrix X so that

$$
A X=\left[\begin{array}{rrr}
-1 & 0 & -4 \\
3 & 2 & 7
\end{array}\right]
$$

Solution: $\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]^{-1}=\frac{1}{15-14}\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right]$

$$
=\left[\begin{array}{rr}
5 & -7 \\
-2 & 3
\end{array}\right]
$$

We solve $A x=b$ by doing

$$
\begin{aligned}
A^{-1} A x & =A^{-1} b \\
x & =A^{-1} b
\end{aligned}
$$

$$
x=\left[\begin{array}{cc}
5 & -7 \\
-2 & 3
\end{array}\right]\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{cc}
-5 & -21 \\
2 & +9
\end{array}\right]=\left[\begin{array}{c}
-26 \\
11
\end{array}\right]
$$

(This solver $\left.\begin{array}{l}3 x_{1}+7 x_{2}=-1 \\ 2 x_{1}+5 x_{2}=3\end{array}\right)$

$$
\left.\begin{array}{l}
X=A^{-1} A X=A^{-1}\left[\begin{array}{rrr}
-1 & 0 & -4 \\
3 & 2 & 7
\end{array}\right] \\
=\left[\begin{array}{cc}
5 & -7 \\
-2 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & 0
\end{array}\right] \\
3
\end{array} 27\right]=\left[\begin{array}{rrr}
-26 & -14 & -69 \\
11 & 6 & 29
\end{array}\right] .
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Formula $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

Question:

If $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$, what is the $(1,2)$ entry of $A \wedge\{-1\}$?
a. $-3 / 2$
b. -1
c. $3 / 2$
d. 2
e. None of the above.

The best method to find inverses of 3×3 matrices or larger
Like questions $15-22$
Find the inverse of $A=\left[\begin{array}{ccc}2 & 4 & 7 \\ 1 & 2 & 2 \\ -1 & 0 & 5\end{array}\right], ~$
solution We use Gauss Jordan elan.
on

$$
\begin{aligned}
& {\left[\begin{array}{ccc:ccc}
2 & 4 & 7 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
-1 & 0 & 5 & 0 & 0 & 1
\end{array}\right] \stackrel{(1) \leftrightarrow(2)}{\longleftrightarrow}\left[\begin{array}{cccccc}
1 & 2 & 2 & 0 & 1 & 0 \\
2 & 4 & 7 & 1 & 0 & 0 \\
-1 & 6 & 5 & 0 & 0 & 1
\end{array}\right]} \\
& \xrightarrow[\longrightarrow]{\text { (2) } \rightarrow \text { (2) }-2(1)} \xrightarrow{(3)}+\left(\begin{array}{cccccc}
1 & 2 & 2 & 0 & 1 & 0 \\
0 & 0 & 3 & 1 & -2 & 0 \\
0 & 2 & 7 & 0 & 1 & 1
\end{array}\right] \\
& \text { (2) } \stackrel{\leftrightarrow(3)}{\leftrightarrows}\left[\begin{array}{cccccc}
1 & 2 & 2 & 0 & 1 & 0 \\
0 & 2 & 7 & 0 & 1 & 1 \\
0 & 0 & 3 & 1 & -2 & 0
\end{array}\right] \overbrace{(3)-\frac{1}{3} \rightarrow \frac{1}{2}(2)}^{(2)}\left[\begin{array}{ccccc}
1 & 2 & 2 & 0 & 1 \\
0 & 1 & 7 / 2 & 0 & \frac{1}{2} \frac{1}{2} \\
0 & 0 & 1 & \frac{1}{3} & -\frac{2}{3} \\
0
\end{array}\right]
\end{aligned}
$$

Why does this work?
Elementary matrices are of 3 kinds, ike

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \longleftrightarrow \text { swap rows } 1 \text { and } 2 \text {. }
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \longleftrightarrow \text { multiply row } 2 \text { by } 7 \neq 0
$$

$$
\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \longleftrightarrow \text { add } 3(3) \text { to (1) }
$$

Theorem 5. Doing an elementary row operation to a matrix A produces the answer EA, where E is the corresponding elementary matrix.
Example Take $\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 2 & 1 \\ -1 & 2 & 0\end{array}\right]$ and (1) $\rightarrow(1)+3(3):$

$$
\left[\begin{array}{rrr}
-2 & 7 & -1 \\
0 & 2 & 1 \\
-1 & 2 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 2 & 1 \\
-1 & 2 & 0
\end{array}\right]
$$

Each step in finding A^{-L} correponds to left multan by an elementorymalix

$$
\text { Start } \begin{aligned}
& {\left[\begin{array}{l:lll}
? & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
2 & 1 & 1 \\
0 & 1, & 1 & 1
\end{array}\right.} \\
&=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
E_{n} \cdots E_{3} E_{2} E_{1}(A ; I]=\left[\begin{array}{l:l}
I & \text { New }
\end{array}\right]
$$

$$
E_{n} \cdots \quad E_{1}=A^{-1}
$$

New
Theorem. Every invertible matrix can be written as a product of elementary matrices.

Theorems 1 and 3 . If A is invertible then $A \wedge\{-1\}$ is unique.
$(\mathrm{AB}) \wedge\{-1\}=\mathrm{B} \wedge\{-1\} \mathrm{A} \wedge\{-1\}$
Etc

Theorem 7. Let A be an nxn matrix. The following are equivalent.
a. A is invertible.
b. A is row equivalent to I.
c. $A x=0$ has only the trivial solution.
d. For all $b, A x=b$ has a unique solution.
e. For all $\mathrm{b}, \mathrm{Ax}=\mathrm{b}$ is consistent.

